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Poisson’s ratio, ν, was measured for four materials, a rubbery polymer, a conventional
soft foam, and two auxetic foams. We find that for the first two materials, having
ν ≥ 0.2, the experimental determinations of Poisson’s ratio are in good agreement
with values calculated from the shear and tensile moduli using the equations of
classical elasticity. However, for the two auxetic materials (ν < 0), the equations of
classical elasticity give values significantly different from the measured ν. We offer an
interpretation of these results based on a recently published analysis of the bounds on
Poisson’s ratio for classical elasticity to be applicable. Copyright 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4802925]

I. INTRODUCTION

Poisson’s ratio (ν) is a constant that describes the transverse strain, ε22 or ε33, of an elastic body
accompanying a longitudinal strain, ε11

ν = −ε22

ε11
= −ε33

ε11
(1)

For a mechanically isotropic material, Poisson’s ratio is unique, having but one value.1–3 The classical
theory of elasticity for infinitesimal linear strain (i.e., Lamé’s theory)4 links ν of an isotropic solid
to the other elastic constants, including the moduli and Lamé constants.5, 6 Because of the appeal
of representing strain as the sum of a volumetric and a deviatoric (shear) strain, the most common
expression involves the bulk, B, and shear, G, moduli7

G = B
3(1 − 2ν)

2(1 + ν)
(2)

Eq. (2) and related expressions are commonly used to calculate an elastic constant of interest from
elastic constants that are more amenable to direct experimental determination.

In this paper we carry out measurements on four materials, a rubbery polymer, a soft, conven-
tional foam, and two foams exhibiting isotropic auxeticity, originating in de-buckling of cell ribs
that leads to large changes in transverse dimensions during longitudinal elongation.11,8 We compare
Poisson’s ratios measured directly on these materials, νexp, to values calculated from the classical
expression

νcalc = E

2G
− 1 (3)

where E is Young’s modulus. This work represents the first attempted corroboration of the equations
for ν for values spanning a range nearly encompassing the classical bounds, −1 < ν < 0.5. We find
that for two materials herein for which ν ≥ 0.2, the equations of classical elasticity are accurate.
However, for the two materials having ν < 0.2, measurements of the dimensional changes during
elongation yield values of ν that are significantly smaller than those calculated from eq. (3). This
failure of classical elasticity is consistent with a recent prediction5 that Lamé’s theory is valid only
when ν ≥ 0.2.
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II. EXPERIMENTAL

The polyurethane (McMaster-Carr) was an open-cell foam with a density equal to 0.048 g/cm3.
The cell dimensions were measured to be 0.3 – 0.4 mm, with rib thickness ∼0.07 mm for the foam
as received. Auxetic foams were prepared by triaxial compression of rectangular samples (initially
either 46.4 mm × 46.4 mm × 217.5 mm or 51.2 mm × 51.2 mm × 240 mm) in a mold (dimensions
= 32 mm × 32 mm × 150 mm), followed by heating above the softening point of the hard segments
(∼105◦C). Upon removal from the mold following slow cooling to room temperature, the foams
showed ∼10 % expansion relative to the size of mold. The final linear compression ratios were 1.27
and 1.45. To ensure no adhesion of the cell walls, the samples were stretched 20% in each of three
orthogonal directions. These two auxetic foams have small cell dimensions, ca. 0.2 – 0.3 mm. We
designate the as-received foam PU1, and the auxetic samples as PU2 and PU3, where the number
designates their respective volumetric compressive strains of 1, 2, and 3. A solid elastomer sample
was also prepared by curing 1,4-polyisoprene (Natsyn from Goodyear) with 2% by weight dicumyl
peroxide for 30 minutes at 160◦C.

The tensile modulus and Poisson’s ratio were measured on samples elongated on an Instron
5500R at a strain rate (= 0.002 s−1) sufficiently slow to yield equilibrium values. Strains were
determined from the displacement of fiducial marks on test specimens (initially 170 mm long and
36 mm wide), obtained from digitized photographs (Olympus E-PM1, 4032 × 3024 pixels), with
the resolution defined by the pixel size of the fiducial images (∼12 μm). The software (Digplot;
polymerphysics.net/software.html) used to analyse the images provided about 1/10 pixel resolution.
At least three sets of two marks each per longitudinal and transverse direction were used to calculate
ν and the Young’s modulus

E = σe

εe
(4)

where σ e and εe are the respective engineering stress and strain. Strains were measured over a
30 mm × 30 mm area, so that any inhomogeneities in the foams due to the cell structure were
averaged out.

The shear modulus was measured with a sandwich configuration, also using the Instron at a
shear strain rate equal to 0.002 s−1; test samples were 50 mm long × 4 mm wide × 4 mm thick.
Fiducial marks were again used to determine that strain, avoiding any errors due to end effects. To
verify the shear measurements, G was also determined using a torsion geometry on ring specimens
(25.4 mm outer diameter and 11.7 mm inner diameter) with an ARES rheometer operating at the
same low shear rate. The shear modulus is given by

G = f t

lwδ
(5)

where δ and f are the displacement, and force, respectively, and l, w, and t are the respective sample
length, width, and thickness. The shear strain γ = δ / t. For both uniaxial and shear measurements,
the strain rates were confirmed to be sufficiently slower than the rate of relaxation, so that the samples
were in mechanical equilibrium. Measurements at slower rates gave equivalent stresses.

III. RESULTS

The PU1 is transversely isotropic, having a modulus 60% higher in the thicker dimension; thus,
we measured displacement of fiducial marks lying in the symmetric plane. The auxetic foams, PU2
and PU3, behave isotropically along all axes up to at least 5% strain. The deformation mechanism
of the auxetic foams involves de-buckling of the cell ribs, which causes their modulus to be lower
than that of the precursor material.11,8

Figure 1 shows Poisson’s ratio measured directly for the polyisoprene and the three foams.
The uncertainty in the data arises in part from our ability to resolve the fiducial images. The
polyisoprene has a homogeneous structure, and typically elastomers have Poisson’s ratio within the
range 0.49 and 0.5.9 We find no systematic variation for the polyisoprene over our range of strain
measurements, obtaining νexp = 0.496. The foams all show νexp that increases over the range of strains
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TABLE I. Elastic constants and Poisson’s ratio.

polyisoprene PU1 PU2a PU3a

E(ε = 0) 1.145 ± 0.002 0.1450 ± 0.0003 0.0451 ± 0.0002 0.0502 ± 0.0002
G(γ = 0) 0.382 ± 0.003 0.0601 ± 0.0005 0.0550 ± 0.0002 0.0640 ± 0.0007
G(γ = 0.005) — — 0.0524 ± 0.0011 0.0605 ± 0.0010
νcalc γ = 0 0.499 ± 0.014 0.206 ± 0.012 −0.590 ± 0.020 −0.608 ± 0.023
vexp 0.496 ± 0.006 0.204 ± 0.006 −0.699 ± 0.008 −0.650 ± 0.015

aStated error reflects uncertainty in fitted line used to extrapolate measurements to zero strain.

FIG. 1. Directly measured Poisson’s ratio for the four materials. The data for the foams have some dependence on strain,
with the value obtained by linear extrapolation to ε = 0 listed in Table I.

(ca. 1 – 5% elongation). For the PU1 measured in the isotropic plane, νexp increases about 10% with
strain, and linear extrapolation to zero strain gives νexp = 0.20. Over this same range of strains the
auxetic foams show an increase in νexp of about 20%. We extrapolate to zero strain by a linear fit to
the data, obtaining νexp = −0.70 and −0.65 for PU2 and PU3, respectively. The more compressed
foam has a smaller (absolute value) of Poisson’s ratio; similar results were reported previously for
polyurethane foams.8 The values of Poisson ratios determined by direct measurement of longitudinal
and transverse deformations, νexp, are tabulated in Table I, along with the uncertainties.

Figure 2 displays Young’s moduli for the foams; it was constant up to a few percent tensile
strain for all materials. Also shown are the shear moduli, which showed some dependence on strain.
Regression yields the zero strain values given in Table I, which are consistent with the shear moduli
measured by torsional rheometry. Note that PU3, which has the greatest volume compression, has
a larger shear modulus than PU2 (PU1 having intermediate values). Since the mechanical response
involves de-buckling of the foam, there is no certainty that the measured behaviour extrapolates
smoothly to zero strain. Thus, the limit of error on G for the foams (Table I) is taken as the difference
between the value determined by extrapolation to zero strain and the value measured for the lowest
strain; the actual errors are likely smaller.
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FIG. 2. Engineering modulus for the three foams as a function of strain. Young’s moduli are constant; fitting the shear data
to a first order polynomial gives the extrapolation to zero strain listed in Table I.

Table I shows Poisson’s ratio calculated from the equation of classical elasticity (eq. (3)), using
the measured values of the shear and Young’s moduli. For polyisoprene and PU1, for which νexp

≥ 0.2, the difference between the calculated and experimental values is less than 1%; that is, the
agreement is within the experimental uncertainties. This is expected and affirms the validity of our
experimental methods. (Note that the transverse isotropy of PU1 did not result in deviations from
classical elasticity.)

The situation is different for the two auxetic foams. For both PU2 and PU3, vcalc underestimates
the absolute value of the measured Poisson’s ratio, by an amount (about 10%) that exceeds the
experimental uncertainties (which are less than 3%). This conclusion that the calculated ν are larger
than νexp does not depend on the method of extrapolating the data to low strain, as can be seen in
Figure 3.

IV. DISCUSSION

Eq. (2), together with the requirement that the moduli are finite and positive, yields the well-
known “classical” bounds on Poisson’s ratio for isotropic materials2

− 1 < ν < 1/2 (6)

It is known that anisotropic materials, e.g., foams having a honeycomb or otherwise novel
structure,10, 11 can exhibit ν that deviate from these limits, but the behaviour of such materials
deviates from linear elasticity, so that eq. (6) does not apply. However, as we have pointed out
recently,5 with few exceptions ν for isotropic materials does not fall below 0.2.
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FIG. 3. Poisson’s ratio for the auxectic foams measured (filled symbols) and calculated using eq. (3) (open symbols) as a
function of the strain. Extrapolation to zero strain will not yield convergence.

For those materials having ν < 0.2, our recent analysis5, 6 indicated that classical elasticity is
inapplicable. Eq. (6) is arrived at by consideration of the bulk and shear moduli, but the intuitive
appeal of expressing strains in terms of the bulk and deviatoric response does not elevate the
significance of B and G above that of other elastic constants. Expressions for ν in terms of Young’s
modulus, the longitudinal modulus, the biaxial modulus, etc., lead to a larger lower limit on ν than
eq. (5).5, 6 The argument in Ref. 5 is that the most restrictive bounds are the correct ones, since they
do not yield discrepancies with any less restrictive limits. Accordingly, when classical elasticity
applies, it was concluded that the limits on ν for classical elasticity are5, 6

1/5 ≤ ν < 1/2 (7)

This analysis accounts for the apparent failure of classical elasticity herein, although the present
experimental results are valid regardless of the soundness of the derivation in Refs. 5 and 6.

Note that eq. (7) does not represent the limits for real materials, although the left-hand-side of
eq. (7) has the virtue of corresponding to data for most substances. Eq. (7) was derived mathemati-
cally, using only the assumptions of Lamé’s theory. The implication that the equations of classical
elasticity cannot be used for materials having Poisson’s ratio smaller than 0.2 is not a trivial re-
sult, because materials with ν < 0.2 tend to be very hard (e.g., diamond,12 beryllium,13 and fused
quartz).14 This makes direct measurements difficult, with resort often made to techniques such as the
resonant frequency method,13, 15, 16 and the determined elastic constants are then used to calculate
others.

V. SUMMARY

In this work we measured Poisson’s ratio directly for four materials. For a homogeneous
elastomer and a transversely isotropic foam, both having ν ≥ 0.2, Poisson’s ratio calculated from the
shear and tensile moduli is in agreement with the measured ν. However, for the two auxetic foams
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the equation of classical elasticity overestimates ν, with the discrepancy exceeding the experimental
error. Classical elasticity applies to small deformations for which the mechanical response is linear
(e.g., strain energy quadratic in the strain), the behaviour is elastic,2, 8 and the material is sufficiently
homogeneous for continuum mechanics to be applicable. Herein nonlinearity was only apparent
for the shear modulus, and this was addressed in two ways: The data were extrapolated to zero
strain or the value of G at the lowest measured strain was used; the difference between the two
results yields a measure of the uncertainty. Moreover, it is not obvious how the νexp and νcalc in
Fig. 3 might converge in the low strain limit. The viscoelastic nature of the materials was rendered
moot by using strain rates sufficiently slow that a state of mechanical equilibrium prevailed during
the measurements. And material inhomogeneities arising from the cell structure of the foams were
one hundred fold smaller than the fiducial distances; thus, the strain measurements were averaged
ca. 5 × 105 cells.

For the auxetic foams Poisson’s ratio is within the conventional limits of classical elasticity
(eq. (6)), but beyond the more restrictive range of eq. (7). The discrepancy revealed herein with
classical theory pertains to ν < 0.2, which is the situation for which direct measurements are
difficult, so that recourse is often made to the classical elasticity equations. Our results are consistent
with a mathematical derivation5, 6 suggesting that eq. (7) does indeed give the proper classical
bounds. The implication is that the use of the equations of classical elasticity to calculate ν or other
elastic constants will be in error for any material for which Poisson’s ratio is smaller than 0.2.
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5 P. H. Mott and C. M. Roland, Phys. Rev. B 80, 132104 (2009).
6 P. H. Mott and C. M. Roland, arXiv:1204.3859 (2012).
7 R. S. Lakes and R. Witt, Int. J. Mech. Eng. Edu. 30, 50 (2000).
8 J. B. Choi and R. S. Lakes, J. Mat. Sci. 27, 4678 (1992).
9 M. L. Anderson, P. H. Mott, and C. M. Roland, Rubber Chem. Technol. 77, 293 (2004).

10 K. E. Evans and A. Alderson, Adv. Matl. 12, 617 (2000).
11 R. Lakes, Science 235, 1038 (1987).
12 C. A. Klein and G. F. Cardinale, Diamond Relat. Matl. 2, 918 (1993).
13 A. Migliori, H. Ledbetter, D. J. Thoma, and T. W. Darling, J. Appl. Phys. 95, 2436 (2004).
14 T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007).
15 A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure, Physica B 183, 1 (1993).
16 R. G. Leisure and F. A. Willis, J. Phys. Cond. Mat. 9, 6001 (1997).

Downloaded 18 Apr 2013 to 132.250.22.5. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license.
See: http://creativecommons.org/licenses/by/3.0/

http://dx.doi.org/10.1038/nmat3134
http://dx.doi.org/10.1023/A:1014411503170
http://dx.doi.org/10.1103/PhysRevB.80.132104
http://dx.doi.org/10.1007/BF01166005
http://dx.doi.org/10.5254/1.3547824
http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
http://dx.doi.org/10.1126/science.235.4792.1038
http://dx.doi.org/10.1016/0925-9635(93)90250-6
http://dx.doi.org/10.1063/1.1644633
http://dx.doi.org/10.1111/j.1551-2916.2007.01945.x
http://dx.doi.org/10.1016/0921-4526(93)90048-B
http://dx.doi.org/10.1088/0953-8984/9/28/002

